Tableaus for Natural Logic

Reinhard Muskens

Tilburg Center for Logic and Philosophy of Science

r.a.muskens@uvt.nl

http://let.uvt.nl/general/people/rmuskens/

Abstract. In this paper we develop the beginnings of a tableau system for natural logic, the logic that is present in ordinary language and that we used in ordinary reasoning. The system is based on certain terms of the typed lambda calculus that can go proxy for linguistic forms and which we call Lambda Logical Forms. It is argued that proof-theoretic methods like the present one should complement the more traditional model-theoretic methods used in the computational study of natural language meaning.

1 Introduction

A standard approach to the semantics of natural language (Montague, 1973) provides language, or rather fragments of language, with a truth definition by means of translation into the language of some logic (such as Montague’s IL) that already comes with one. The truth conditions of a translated sentence will then be identified with those of its translation. This also induces a relation of entailment on the translated fragment, for a sentence S can be taken to entail a sentence S' if and only if the translation of the former entails that of the latter.

This provides a way to do automated inference on natural language. In order to check whether a given argument stated in ordinary language holds, its premises and conclusion are translated into logic with the help of some form of the typed lambda calculus, after which a theorem prover is invoked to do the actual testing. This procedure is described in Blackburn and Bos (2005) with great clarity and precision.

Here we will follow another route and define a tableau system that directly works on representations that are linguistically relevant. We will also place in focus tableau rules that are connected with certain properties of operators that seem important from a linguistic point of view. Our aim will not so much be to provide a proof system that is complete with respect to the semantics of our representations, but to provide rules that can be argued to come close to the rules implemented in human wetware. The purpose of this paper, therefore, is to contribute to the field of natural logic.\(^1\)

2 Lambda Logical Forms

For our purpose it will be of help to have representations of natural language expressions that are adequate both from a linguistic and from a logical point of view. At first blush, this may seem problematic, as it may be felt that linguistic and logic require completely different and competing properties from the representations they use, but in fact the typed lambda calculus provides what we need, or at least a good approximation to it. In order to obtain a class of terms with linguistic relevance we will restrict attention to those (simply typed) lambda terms that are built up from variables and non-logical constants, with the help of application and lambda abstraction and will delimit this class further by the restriction that only variables of individual type are abstracted over. The resulting terms, which will be called Lambda Logical Forms (LLFs), are often very close to linguistic expressions, as the following examples illustrate.

(1) a. ((a woman)walk)
b. (if((a woman)walk)((no man)talk))
c. (mary(think(if((a woman)walk)(((no man)talk)))))
d. ((a woman)(λx.(mary(think(if(walk x)(((no man)talk)))))))
e. (few man)λx.(most woman)λy.like xy

The terms in (1) were built up in the usual way, but no logical constants, such as =, ∀, ∃, →, ∧, ∨, ¬ and the like, were used in their composition. The next section will make a connection between some of the non-logical constants used in (1) and logical ones, but this connection will take us from natural representations of linguistic expressions to rather artificial ones. Lambda terms containing no logical constants will therefore continue to have a special status.

Lambda Logical Forms come close to the Logical Forms that are studied in generative grammar. For example, in Heim and Kratzer (1998) trees such as the one in (2a) are found, whose labeled bracket notation in (2b) is strikingly similar to the λ-term in (2c).

(2) a.
 S
 ┌─ DP
 │ every linguist 1 S
 │ ┌─ John ─ V P
 │ │ ┌─ offended t1
 │ │ └─ [s[DP every linguist][l[s John][VP offended t1]]]
 │ └─ [(every linguist)(λx1.(john(offend x1)))]

3 Relational Type Logic

Type logics, including Montague's IL, are often based on hierarchies of unary functions, while it are in fact relations, and algebras of relations (or partial relations\(^2\)), that seem to play a fundamental role in language. One indication for this is the fact, pointed out already in von Stechow (1974) and in Keenan and Faltz (1978), that and, or, and not operate on phrases in arbitrary categories and then, more often than not, function as intersection, union and complementation respectively Gazdar (1980). These operations find a natural home in relational algebras and the latter should therefore be a prime candidate for modeling the semantics of language. A second indication for the importance of relational algebras comes from natural logic itself. A lot of work in this tradition revolves around properties such as monotonicity, which are also best viewed as properties of operators on relational algebras. We will therefore opt for using a relational type logic instead of a functional one.

While it is eminently possible to code relations as certain functions, it is important to note that such a move is not forced upon us and we prefer to base the logic directly on hierarchies of relations in the way of Orey (1959) and Schütte (1960). In order to define the relevant types, one starts with a collection of basic types, such as \(e\) (for entities) or \(s\) (for states or possible worlds), and then one defines higher types by stipulating that \(⟨\alpha_1 \ldots \alpha_n⟩\) is a type whenever \(\alpha_1, \ldots, \alpha_n\) are. Types \(⟨\alpha_1 \ldots \alpha_n⟩\) are associated with relations taking objects of type \(\alpha_i\) as their \(i\)-th argument.

While Orey (1959) and Schütte (1960) work with a logical syntax that does not include \(\lambda\)-abstraction or one-step application of relations to their arguments, as is usual in functional type theories based on Church (1940), these constructions can easily be given a relational semantics as well, as was observed in Muskens (1989). Readers are referred to this paper, or to Muskens (1995) or Muskens (2007) for more information on the workings of relational type theory with lambdas and application. We trust, however, that the present paper will be readable by those familiar with functional type theory who keep in mind that (a) our relational type \(⟨⟩\) corresponds to the type \(t\) of truth-values, and (b) our \(⟨\alpha_1 \ldots \alpha_n⟩\) corresponds to Montague's \((\alpha_1,(\alpha_2,(\ldots(\alpha_n,t)\ldots)))\).\(^3\)

4 Semantics

We will concentrate on proof theory in this paper, but proofs should be sound and in order to be able to verify the soundness of our proof rules we need a semantics. In this section we will provide one that is relatively simple and close to the one in Montague (1973). There has been no attempt at great originality

\(^2\) Muskens (1995) argues that Boolean algebras of total relations should be replaced by weaker algebras of partial relations.

\(^3\) The latter is written \(\alpha_1 \rightarrow \cdots \rightarrow \alpha_n \rightarrow t\) in a notation preferred by mathematicians and computer scientists.
Some open class of words are to be treated. This is a modal treatment, in the
first column are related to English words in an obvious way and some
constraining the interpretations of the relevant constants. All constants
tulates these constants (in the relational format) and the third a series of
that can be used to build LLFs, while its second column displays the types of
in order to obtain a more adequate entailment relation.

'logical' words of English, should be tied to logical constants in some way in
every, a, no, and, or
non-logical constants such as

The Lambda Logical Forms exemplified in (1) can be evaluated on the usual
models and therefore strictly speaking already have a semantics. But, due to the
fact that all constants in LLFs are non-logical, this semantics is trivial in
the sense that there is no entailment between LLFs except between those LLFs
that reduce to the same normal form via lambda conversion. It is clear that
non-logical constants such as every, a, no, and, or and if, which translate
'logical' words of English, should be tied to logical constants in some way in
order to obtain a more adequate entailment relation.

This coupling is done in Table 1, whose first column gives a set of constants
that can be used to build LLFs, while its second column displays the types of
these constants (in the relational format) and the third a series of meaning postulates
constraining the interpretations of the relevant constants. All constants
in the first column are related to English words in an obvious way and some
(man, walk, love, bigger, big, blue, john) exemplify how the items of
some open class of words are to be treated. This is a modal treatment, in the

<table>
<thead>
<tr>
<th>CONSTANT TYPE</th>
<th>MEANING POSTULATES</th>
</tr>
</thead>
<tbody>
<tr>
<td>man</td>
<td>(\langle es \rangle)</td>
</tr>
<tr>
<td>walk</td>
<td>(\langle es \rangle)</td>
</tr>
<tr>
<td>love</td>
<td>(\langle ees \rangle)</td>
</tr>
<tr>
<td>is</td>
<td>(\langle ees \rangle) is (\equiv \lambda x \lambda y \lambda i. x = y)</td>
</tr>
<tr>
<td>bigger</td>
<td>(\langle ees \rangle) (\forall x \forall i \neg \text{bigger} x i) (\forall x \forall y \forall v \forall i ((\neg \text{bigger} x y i \land \neg \text{bigger} y z i) \rightarrow \neg \text{bigger} x z i))</td>
</tr>
<tr>
<td>big</td>
<td>(\langle (es)es \rangle) big (\equiv \lambda P \lambda x \lambda i (P x i \land \text{most} P (\text{bigger} x i)))</td>
</tr>
<tr>
<td>fake</td>
<td>(\langle (es)es \rangle)</td>
</tr>
<tr>
<td>blue</td>
<td>(\langle es \rangle)</td>
</tr>
<tr>
<td>if</td>
<td>(\langle (s)(s)s \rangle) if (\equiv \lambda p \lambda q \lambda i (p i \rightarrow q i))</td>
</tr>
<tr>
<td>and</td>
<td>(\langle (\bar{a}s)(\bar{a}s)\bar{a}s \rangle) and (\equiv \lambda R_1 \lambda R_2 \lambda X \lambda i (R_1 X i \land R_2 X i))</td>
</tr>
<tr>
<td>or</td>
<td>(\langle (\bar{a}s)(\bar{a}s)\bar{a}s \rangle) or (\equiv \lambda R_1 \lambda R_2 \lambda X \lambda i (R_1 X i \lor R_2 X i))</td>
</tr>
<tr>
<td>not</td>
<td>(\langle (\bar{a}s)\bar{a}s \rangle) not (\equiv \lambda R \lambda X \lambda i (\neg R X i))</td>
</tr>
<tr>
<td>may</td>
<td>(\langle (s)s \rangle) may (\equiv \lambda p \lambda i \lambda j (\text{acc} i j \land p j))</td>
</tr>
<tr>
<td>must</td>
<td>(\langle (s)s \rangle) must (\equiv \lambda p \lambda i \lambda j (\text{acc} i j \rightarrow p j))</td>
</tr>
<tr>
<td>think</td>
<td>(\langle (s)es \rangle) think (\equiv \lambda p \lambda i \lambda j (\text{B} x i j \rightarrow p j))</td>
</tr>
<tr>
<td>know</td>
<td>(\langle (s)es \rangle) know (\equiv \lambda p \lambda i \lambda j (\text{K} x i j \rightarrow p j))</td>
</tr>
<tr>
<td>every</td>
<td>(\langle (es)(es)s \rangle) every (\equiv \lambda P \lambda P \lambda i \lambda x (P x i \rightarrow P x i))</td>
</tr>
<tr>
<td>a</td>
<td>(\langle (es)(es)s \rangle) a (\equiv \lambda P \lambda P \lambda i \exists x (P x i \land P x i))</td>
</tr>
<tr>
<td>no</td>
<td>(\langle (es)(es)s \rangle) no (\equiv \lambda P \lambda P \lambda i \neg \exists x (P x i \land P x i))</td>
</tr>
<tr>
<td>few</td>
<td>(\langle (es)(es)s \rangle) few (\equiv \lambda P \forall \forall i ((\text{few} P P i \land (\lambda x.P x i)) \subseteq (\lambda x.P x i)) \rightarrow \text{few} P'' P i)</td>
</tr>
<tr>
<td>most</td>
<td>(\langle (es)(es)s \rangle) most (\equiv \lambda P \lambda P \lambda i (\lambda x (P x i \land \neg P x i) <_{1} \lambda x (P x i \land P x i)))</td>
</tr>
<tr>
<td>john</td>
<td>(\langle (es)s \rangle) john (\equiv \lambda P.x P j)</td>
</tr>
</tbody>
</table>

Table 1. Some constants with associated meaning postulates.
sense that possible worlds are taken into account and in the sense that certain words *may, must, think, know* are taken to express quantification over possible worlds. We do not, however, have special modal operators in the logical language (cf. Gallin 1975).

Most of the meaning postulates in the third column stipulate that there is extensional equivalence (**≡**) between some constant and some other expression, for example between *is* and \(\lambda x \lambda y \lambda i. x = y\) and between the constant *if* and \(\lambda p \lambda q \lambda i(p \rightarrow qi)\).4

Other postulates constrain constants in a less rigid way. For example, the postulates for *bigger* just require the complement of this relation to be a total ordering (in each world \(i\)), while those for *few* impose this determiner to be monotone decreasing in both arguments. In the entries for *may* and *must* the constant acc of type \(\langle ss\rangle\) is an accessibility relation on the set of worlds, while the entries for *think* and *know* make use of \(B\) and \(K\), both of type \(\langle ess\rangle\), where e.g. \(Bxij\) is interpreted as ‘\(j\) is a doxastic alternative for \(x\) in \(i\)’. The relation \(A <_1 B\), used in the entry for *most* is the second order definable relation expressing that there is an injection from \(A\) into \(B\) but that there is no bijection between \(A\) and \(B\).

Given the meaning postulates in the third column of Table 1 it is often possible to rewrite LLFs in a familiar logical form, often first-order. For example, it is easily seen that (3a) below is extensionally equivalent with (3b).

(3) a. \(((\text{if}(\text{a woman})\text{walk}))((\text{no man})\text{talk}))\)
 b. \(\lambda i. \exists x(\text{woman } x i \land \text{walk } xi) \rightarrow \neg \exists x(\text{man } xi \land \text{talk } xi)\)
 c. \(\exists x(\text{woman } x @ \land \text{walk } x @) \rightarrow \neg \exists x(\text{man } x @ \land \text{talk } x @)\)

(3b) is a term that, when applied to a constant @ of type \(s\) (standing for the actual world), returns the predicate logical (3c). Such terms make good input for an off-the-shelf theorem prover.

As was already indicated before, we are not interested here in following the translation route. We want to stay closer to the linguistic system itself and provide tableaus directly for LLFs.

5 A Natural Logic Tableau System

In this section we will discuss a series of rules for a tableau system directly based on LLFs. While tableau systems usually only have a handful of rules (roughly two for each logical operator under consideration), this system will be an exception. There will be many rules, many of them connected with special classes of expressions. Defining a system that comes even close to adequately

4 The extensional equivalence \(R_1 \equiv R_2\) between two relations \(R_1\) and \(R_2\) can be defined as \(R_1 \subset R_2 \land R_2 \subset R_1\), where \(\subset\) is inclusion between extensions. The latter is taken to be primitive in Muskens (2007), upon which we base ourselves, but \(R \subset R'\) is also equivalent with \(\forall X(RX \rightarrow R'X)\). In the logic of Muskens (2007) it is possible to distinguish between \(\equiv\), identity of extension, and =, intensional identity.
describing what goes on in ordinary language will be a task far greater than what can be accomplished in a single paper and we must therefore contend ourselves with giving examples of rules that seem interesting. Further work should lead to less incomplete descriptions. Since the rules we consider typically are connected to some algebraic property or other (such as monotonicity or anti-additivity—see below), it will also be necessary to specify to which class of expressions each rule applies. Describing exactly, for example, which expressions are monotone increasing in any given language requires a lot of careful linguistic work and for the moment we will be satisfied with providing examples (here: some, some N, every N, many N, and most N).

Familiarity with the method of tableaus will be assumed. Our tableaus will be based upon a (signed variant of) the KE calculus (D’Agostino and Mondadori, 1994).

5.1 Tableau Entries

We will work with signed tableaus in which entries can have one of the following forms.

- If A is an LLF of type $\langle \vec{a} \rangle$ and \vec{C} is a sequence of constants or LLFs of types \vec{a}, then $T\vec{C}: A$ and $F\vec{C}: A$ are tableau entries;
- If A and B are LLFs of type $\langle \vec{a} \vec{\beta} \rangle$ and \vec{a} is a sequence of constants of types $\vec{\beta}$ then $T\vec{a}: A \subset B$ and $F\vec{a}: A \subset B$ are tableau entries.

An entry $T\vec{C}: A$ (or $F\vec{C}: A$) intuitively states that $A\vec{C}$ is true (false), while $T\vec{a}: A \subset B$ (or $F\vec{a}: A \subset B$) states that it is true (false) that $(\lambda \vec{x}. A\vec{a}) \subset (\lambda \vec{x}. A\vec{a})$ (where the \vec{x} are of types \vec{a}). For example, $Ti: man \subset talk$ states that, as a matter of contingent fact, in world i all men are talking, while $T: sparrow \subset bird$ says that, in all worlds, all sparrows are birds.

5.2 Closure Rules

There will be two cases of outright contradiction in which a branch can be closed.

\[
\begin{array}{c}
T\vec{C}: A \\
F\vec{C}: A \\
\hline
\end{array}
\begin{array}{c}
F\vec{a}: A \subset A \\
\hline
\times
\end{array}
\]

5.3 Rules Deriving from the Format

The format we have chosen also validates some rules. First, we are only interested in LLFs up to $\beta\eta$ equivalence and lambda conversions can be performed at will. Second, the $X\vec{C}: A$ format (where X is T or F) validates the following rules.

\[
\begin{array}{c}
X\vec{C}: AB \\
\hline
XB\vec{C}: A
\end{array}
\begin{array}{c}
XB\vec{C}: A \\
\hline
X\vec{C}: AB
\end{array}
\]

So we can shift arguments to the front and shift them back again.
5.4 The Principle of Bivalence

The KE calculus, which we base ourselves upon, allows for a limited version of the cut rule, called the Principle of Bivalence (PB). It runs as follows.

\[
\begin{align*}
T\vec{C} : A & \quad F\vec{C} : A \\
\end{align*}
\]

provided \(A\) and all \(\vec{C}\) are already in the tableau.

The provision here is essential in order to maintain analyticity of the method. \(A\) should be a subterm of a term that already occurs in the tableau and all the \(C\) should also already be present (not as subterms).

Splitting a tableau is a very costly step in view of memory resources and if we want to devise a system that comes close to human reasoning (at the moment we are just exploring the logic behind such a system not developing such a system itself) we should start investigating under what conditions the human reasoner in fact takes this step. Here we have opted to let PB be our only tableau-splitting rule, as it is in the calculus KE.

5.5 Rules for \(\subset\)

The following rules seem reasonable for our inclusion statements.

\[
\begin{align*}
T\vec{a} : A \subset B & \quad T\vec{a} : A \subset B \\
T\vec{a} : B \subset C & \quad T\vec{c}\vec{a} : A \\
T\vec{a} : A \subset C & \quad T\vec{c}\vec{a} : B \\
\end{align*}
\]

(8) \(F\vec{a} : A \subset B\) where \(\vec{b}\) are fresh constants of appropriate type

\[
\begin{align*}
T\vec{b}\vec{a} : A \\
F\vec{b} : B \\
\end{align*}
\]

But while the rules in (7) do not introduce any new material, that in (8) does. The witnesses \(\vec{b}\) that are introduced here must be fresh to the branch.

5.6 Hyponomy Rule

We will suppose that many basic entailments between words\(^5\) are given in the lexicon and are freely available within the tableau system. This leads to the following rule.

(9) If \(A \subset B\) is lexical knowledge:

\[
\begin{align*}
T\vec{a} : A \subset B \\
\end{align*}
\]

Tableau validity will thus be a notion that is dependent on the set of entailments that are considered lexical knowledge.

\(^5\) In natural language there are entailment relations within many categories (Groenendijk and Stokhof, 1989). If \(A \subset B\) is true in all models under consideration, we say that \(A\) entails \(B\). For example, \textbf{sparrow entails bird} and \textbf{each entails most}.\]
5.7 Boolean Rules

We can now give rules for the operators \texttt{and}, \texttt{or} and \texttt{not}, the first two of which we write between their arguments, much as the rules for \(\land\), \(\lor\) and \(\neg\) would be in a signed variant of the KE calculus. What is different here is that these rules are given for conjunction, disjunction and complementation in all categories, not just the category of sentences.

\begin{align*}
(10) & T\overline{C}: A \text{ and } B & T\overline{C}: A & T\overline{C}: A \text{ and } B \\
& F\overline{C}: A \text{ and } B & T\overline{C}: A & T\overline{C}: B \\
& T\overline{C}: B & F\overline{C}: B & F\overline{C}: A \\
& F\overline{C}: B & T\overline{C}: B & T\overline{C}: A \\
(11) & F\overline{C}: A \text{ or } B & T\overline{C}: A \text{ or } B & T\overline{C}: A \text{ or } B \\
& T\overline{C}: A & F\overline{C}: A & F\overline{C}: B \\
& F\overline{C}: A & T\overline{C}: B & T\overline{C}: A \\
(12) & T\overline{C}: \text{ not } A & F\overline{C}: \text{ not } A & F\overline{C}: \text{ not } A \\
& F\overline{C}: A & T\overline{C}: A \\

Here is a tableau showing that \texttt{not(man or woman)} entails \texttt{(not man) and (not woman)}.

\begin{align*}
(13) & Tci: \text{ not(man or woman)} & Fci: \text{(not man) and (not woman)} \\
& Fci: \text{ man or woman} & Fci: \text{ man} & Fci: \text{ woman} \\
& Tci: \text{ not man} & Fci: \text{ not man} \\
& Fci: \text{ not woman} & Tci: \text{ man} \\
& Tci: \text{ woman} & \times & \times \\

In order to refute the possibility that some object \(c\) and some world \(i\) satisfy \texttt{not(man or woman)} but do not satisfy \texttt{(not man) and (not woman)} a tableau was developed which starts from the counterexample set

\[\{Tci: \text{ not(man or woman)}, Fci: \text{(not man) and (not woman)}\} \]

Since the tableau closes the possibility is indeed refuted.

While \texttt{and}, \texttt{or} and \texttt{not} seem to be operative in all categories, \texttt{if} is sentential. Sticking to the underlying semantics in Table 1, where \texttt{if} is essentially treated as material implication (another semantics could be chosen of course), we formulate its rules as follows. Note that sentences still need a parameter (here: \(i\)) since their type is \(\langle s\rangle\), not just \(\langle\rangle\).
5.8 Rules for Monotonic Operators

The rules we have discussed until now were either completely general or operated on specific words (constants), but it has been observed that natural reasoning hinges on properties that attach to certain groups of expressions. Let us write \(\subset_i \) for the relation that obtains between relations \(M \) and \(M' \) of the same type \(\langle \mathbf{s} \rangle \) if \((\lambda\mathbf{x}. M\mathbf{x}) \subset (\lambda\mathbf{x}. M'\mathbf{x}) \). A relation \(A \) of type \(\langle\langle \mathbf{s} \rangle \rangle \) is called upward monotone if \(\forall XY\forall i (X \subset_i Y \rightarrow AX \subset_i AY) \) (where \(X \) and \(Y \) are of type \(\langle \mathbf{s} \rangle \)). Examples of upward monotone expressions (already mentioned above) are \textit{some}, \textit{some N}, \textit{every N}, \textit{many N}, \textit{most N} (where \(N \) varies over expressions of type \(\langle \mathbf{e} \rangle \)), but also \textit{Mary}. Here is a tableau rule for upward monotone (\text{mon}\uparrow) expressions.

(15) If \(A \) is \text{mon}\uparrow:

\[
T\mathcal{C}i: AB \\
T_i: B \subset B' \\
\]
\[
T\mathcal{C}i: AB'
\]

And here is a dual rule for expressions that are downward monotone, i.e. that satisfy the property \(\forall XY\forall i (X \subset_i Y \rightarrow AY \subset_i AX) \). Examples are \textit{no}, \textit{no N}, \textit{every}, \textit{few}, and \textit{few N}.

(16) If \(A \) is \text{mon}\downarrow:

\[
T\mathcal{C}i: AB \\
T_i: B' \subset B \\
\]
\[
T\mathcal{C}i: AB'
\]

Using the second of these rules, we show, by way of example, that \textit{no bird moved} entails \textit{no lark flew}.

(17)

\[
T_i: \text{no bird moved} \\
F_i: \text{no lark flew} \\
T_i: \text{flew} \subset \text{moved} \\
T_i: \text{no bird flew} \\
Tflew, i: \text{no bird} \\
Fflew, i: \text{no lark} \\
T_i: \text{lark} \subset \text{bird} \\
Tflew, i: \text{no lark} \\
\times
\]

A central theme of Sánchez (1991) is that monotonicity reasoning is at the heart of traditional logic. Here is a tableau for the syllogism known as \textit{Disamis}.

\footnote{We follow the convention, usual in type-logical work, that association in terms is to the left, i.e. \(ABC \) is short for \((AB)C \) (which in its turn is short for \(((AB)C) \)).}
The crucial step makes use of the upward monotonicity of some. We have used a rule to the effect that all essentially is \subset_i (where i is the current world) which will be introduced below.

5.9 Other Rules Connected to Algebraic Properties

Upward and downward monotonicity are not the only algebraic properties that seem to play a pivotal role in language. There is a literature starting with Zwarts (1981) singling out anti-additivity, as linguistically important. An operator A is anti-additive if it is downward monotone and satisfies the additional property that $\forall XY ((AX \cap AY) \subset A(X \cup Y))$. Rules for anti-additive operators, examples of which are no-one and without, but also not, are easily given:

(19) If A is anti-additive:

\[
\begin{align*}
F\vec{C} : A(B \text{ or } B') & \quad F\vec{C} : A(B \text{ or } B') \\
T\vec{C} : AB & \quad T\vec{C} : AB' \\
F\vec{C} : AB' & \quad F\vec{C} : AB
\end{align*}
\]

We can continue in this vein, isolating rules connected to semantic properties that have been shown to be linguistically important. For example, van der Does (1992) mentions splittingness, $\forall XY (A(X \cup Y) \subset (AX \cup AY))$, and having meet, $\forall XY ((AX \cap AY) \subset A(X \cup Y))$, which we can provide with rules as follows.

(20) If A has meet:

\[
\begin{align*}
F\vec{C} : A(B \text{ and } B') & \quad F\vec{C} : A(B \text{ and } B') \\
T\vec{C} : AB & \quad T\vec{C} : AB' \\
F\vec{C} : AB' & \quad F\vec{C} : AB
\end{align*}
\]

(21) If A is splitting:

\[
\begin{align*}
T\vec{C} : A(B \text{ or } B') & \quad T\vec{C} : A(B \text{ or } B') \\
F\vec{C} : AB & \quad F\vec{C} : AB' \\
T\vec{C} : AB' & \quad T\vec{C} : AB
\end{align*}
\]

no N and every N have meet, while some N is splitting.
5.10 Getting Rid of Boolean Operators

Many of the rules we have seen thus far allow one to get rid of Boolean operators, even if the operator in question is not the main operator in the LLF under consideration. Here are a few more. If a Boolean is the main connective in the functor of a functor-argument expression it is of course always possible to distribute it over the argument and Booleans can likewise be pulled out of lambda-abstractions.

\[
\begin{align*}
\text{If } & \text{a Boolean is the main connective} \\
\text{then } & \text{it is possible to distribute it over the argument.}
\end{align*}
\]

These rules were given for \text{and}, but similar rules for \text{or} and \text{not} are also obviously correct.

Other rules that help removing Booleans from argument positions are derivable from rules that are already present, as the reader may verify. Here are a few.

\[
\begin{align*}
\text{(23) If } & \text{a Boolean is the main connective} \\
\text{then } & \text{it is possible to distribute it over the argument.}
\end{align*}
\]

5.11 Rules for Determiners

Let us look at rules for determiners, terms of type $\langle\langle es\rangle\langle es\rangle s\rangle$. It has often been claimed that determiners in natural language all are conservative, i.e. have the property $\forall XY (DXY \equiv DX(X \cap Y))$ (van Benthem, 1984). Leaving the question whether really all determiners satisfy this property aside, we can establish that for those which do we can use the following tableau rule.

\[
\begin{align*}
\text{(25) If } & \text{a Boolean is the main connective} \\
\text{then } & \text{it is possible to distribute it over the argument.}
\end{align*}
\]

It is clear that not all cases are covered, but the rules allow us to get rid of \text{and} and \text{or} at least in some cases.

This again is a rule that removes a Boolean operator from an argument position. Here is another. If determiners D and D' are duals (the pair \text{some} and \text{every} are prime examples), the following rule can be invoked. (We let $\overline{T} = F$ and $\overline{F} = T$.)
If D and D' are duals:
\[
\begin{align*}
X_i & : DA(\neg B) \\
\overline{X}_i & : D'AB
\end{align*}
\]

The following rule applies to contradictory determiners, such as some and no.

If D and D' are contradictories:
\[
\begin{align*}
X_i & : DAB \\
\overline{X}_i & : D'AB
\end{align*}
\]

There must also be rules for the logical determiners every and some. The first of these determiners is of course closely related to \subset and we obtain the following rule.

\[
\begin{align*}
X_i & : \text{every } AB \\
\overline{X}_i & : A \subset B
\end{align*}
\]

The second may be given its own rules.

\[
\begin{align*}
T_i & : \text{some } AB \\
F_i & : \text{some } AB \\
X_i & : \text{some } AB \\
T_{bi} & : A \\
T_{ci} & : A \\
X_{bi} & : \text{some } BA \\
F_{ci} & : B
\end{align*}
\]

The b in the first rule must again be fresh to the branch. Such taking of witnesses typically leads to undecidability of the calculus and it would be an interesting topic of investigation how the linguistic system avoids the ‘bleeding and feeding’ loops that can result from the availability of such rules.

5.12 Further Rules

In a full paper we will add rules for the modal operators may and must, think and know. We will also consider rules that are connected to comparatives and other expressions.

6 Conclusion

One way to describe the semantics of ordinary language is by means of translation into a well-understood logical language. If the logical language comes with a model theory and a proof theory, the translation will then induce these on the fragment of language that is translated as well. A disadvantage of this procedure is that precise translation of expressions, taking heed of all their logical properties, often is difficult. Whole books have been devoted to the semantics of a few related words, but while this often was done with good reason and in some cases has led to enlightening results, describing language word by word hardly seems a good way to make progress. Tableau systems such as the one
developed here provide an interesting alternative. They interface with the usual model theory, as developing a tableau can be viewed as a systematic attempt to find a model refuting the argument, but on the other hand they seem to give us a better chance in obtaining large coverage systems approximating natural logic. The format allows us to concentrate on rules that really seem linguistically important and squares well with using representations that are close to the Logical Forms in generative syntax.
Bibliography

